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Abstract

This paper considers the modelling of recovery and recrystallisation of single phased metals. The recrystallisation nucle-
ation model of Zurob et al. [H. Zurob, Y. Bréchet, J. Dunlop, Acta Mater. 54 (2006) 3983] has been extended to allow for
recrystallisation growth and the concurrent recovery in the non-recrystallised grains. The input parameters of the model
are physically based and can be measured, being the recovery kinetics and boundary mobility. Output from the model gives
critical strains and temperatures for recrystallisation, and the recrystallisation kinetics. As an example the model is applied
to the recovery and recrystallisation kinetics of Zircaloy-4. The grain boundary mobility is not well known for this mate-
rial, and so it is taken to be a free parameter with a temperature dependence coming from the Turnbull mobility. The
model successfully describes recovery kinetics of Zircaloy-4, and once the mobility has been estimated gives good
predictions of critical temperatures and strains as well as the kinetics of recrystallisation under non-isothermal heat
treatments.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction recrystallised fraction, X(¢), during annealing is
the Johnson-Mehl-Avrami-Kolmogorov (JMAK)
The modelling of the softening kinetics of work equation [1-5]

hardened materials has important industrial appli-
cations both for fabrication and for the prediction
of in service performance. The standard tool to
model phenomenologically the evolution of the

X(t) = 1 — exp(—kt"), (1)

where ¢ is the time and, k£ and »n are numerical con-
stants used to fit the equation to the experimental
data. The JMAK equation efficiently describes soft-
BT ening data and recrystallisation kinetics for isother-
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the parameters k and n. The standard interpreta-
tions relies on simplistic and probably unrealistic
assumptions such as site saturation, or constant
nucleation rate and constant growth Kkinetics.
Experimentally, and not surprisingly, the measured
n exponent is far from the values expected using
these assumptions (i.e. 3—4) [6]. It is however well
known that the nucleation rate is non-constant [6—
9] and that recovery takes place concurrently with
recrystallisation leading to a non-constant driving
force and therefore to a non-constant growth rate.
In the present paper a general approach is proposed
to relax these constraints, by coupling the driving
force for recrystallisation with a model for static
recovery and using a more explicit description of
the process of recrystallisation nucleation. This re-
quires a more sophisticated mathematical treatment
(Schneider equations [10]) but provides a model
which can be readily extended to non-isothermal
conditions. This approach is then applied to the
recrystallisation kinetics of the zirconium alloy
Zircaloy-4.

Section 2 describes the development of a general
mean field model for recovery kinetics in conjunc-
tion with nucleation and growth of recrystallisation.
The nucleation of new grains is related to a micro-
structural instability of the underlying cell/sub-grain
structure. In the growth model, the driving force for
recrystallisation is taken to be the stored energy due
to cold work which decreases due to static recovery.
Therefore the growth rate of new grains decreases
with time due to the changing driving force. The
model is then applied (Section 3) to predict the
nucleation of recrystallisation and the isothermal
softening kinetics of Zircaloy-4 using physically sig-
nificant parameters for which the order of magni-
tude is known. The model is then applied to non-
isothermal recrystallisation kinetics of Zircaloy-4.

2. A general model for recrystallisation kinetics
2.1. Nucleation of recrystallisation

The nucleation of recrystallisation is described
using the model of Zurob et al. [11] which enables
the prediction of nucleation rates and incubation
times for recrystallisation from a knowledge of
recovery kinetics, initial sub-grain sizes and disloca-
tion density and sub-grain boundary mobility. In
this approach nucleation of recrystallisation is taken
to occur due to strain induced boundary migration
(SIBM). The main features of the model are now

recalled, the reader is referred to [11] for detailed
explanations, for other nucleation processes sece
[6]. The sub-grain structure of the deformed state
can be described by the average size, (r), and the cell
size distribution P(r). A given cell or sub-grain of
size r(¢) will start to grow in an unstable manner
within the deformed structure, when the driving
force for growth, G(f), overcomes the capillary
forces 2ysg/r(1), where ygg is the surface energy. This
is the Bailey—Hirsch criterion [12], which gives a
critical sub-grain/cell size r,(¢) above which unstable
growth, and thus nucleation, occurs

2yse
() > . 2
R0 > gk )
Only the sub-grains larger than this critical size,
will be able to provide viable nuclei within a time
t. During annealing, the average sub-grain size,
(r(1)), increases with time, ¢, as [6,13]

) = () + [ MG 3

where (ro) is the initial average sub-grain size, and
M, is the average mobility of the sub-grain bound-
ary, which is of the order of 0.01-1 of the high angle
boundary mobility, Myagg [11]. G(¢) is the stored
energy which decreases with time due to static
recovery.

The fraction of sub-grains and cells that can form
viable nuclei can be obtained by integration from
r(?) to infinity of the size distribution, P(r)

f(@&) = /oo P(r)dr. (4)

Hansen and co-workers [14,15] measured sub-grain
distributions for a variety of materials in different
deformation states and shows that sub-grain distri-
butions observe self-similar scaling laws. A self-
similar size distribution of sub-grains during growth
amounts to expressing P(r) as

P) = PG = P55

where y is the sub-grain/cell size normalised by the
average sub-grain/cell size (r). The normalised size
distribution can be described by a Rayleigh distribu-
tion [16]

P = e (£, ©

The Maxwell distribution could also be used but the
Rayleigh distribution provides a better fit to the

()
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experimental data [16]. The fraction, f{(¢), of sub-
grains that have reached the critical size for nucle-
ation at time ¢, is therefore

0= P )
Ze(0)

where y.(#) is the normalised critical sub-grain size.

The fraction of sub-grains that can act as recrystal-

lisation nuclei is finally

1) = exp (=5 707). ®)

The number of nuclei per unit volume is calcu-
lated by assuming that all nuclei will form on grain
boundaries of the deformed material, and the num-
ber of possible sites for nucleation per unit surface
scales as 1/(r(1)?). An approximate estimate for the
number of sub-grains Ny(?), touching the grain
boundary per unit volume, is the deformed grain
boundary area per unit volume S(¢), divided by
the average area of the sub-grain/cell

Ny (1) = S<t)2 :
n{r(2)")

The deformed grain boundary area per unit
volume as a function of initial grain size D;, and
cold rolling strain, ¢ is described using the empirical
formulae of Senuma et al. [17]

©)

SO(D,‘, 6) =

1

24
1y (0:491€" 4 0.155¢ 7 +0.143¢ ™).
(10)

This formula describes the change in shape of a
spherical grain to an ellipsoid during rolling defor-
mation. From this the evolution of the number of
nuclei per unit volume N(¢), as a function of time
can be readily calculated

N(t) = f(t)N(2) (11)

and thus the nucleation rate per unit volume N(z).

In order to go further it is necessary to evaluate
the evolution of the stored energy G(z), resulting
from static recovery.

2.2. Recovery kinetics

Static recovery is classically described as the
relaxation processes of the internal stresses, associ-
ated with the dislocation population resulting from
cold work. The initial model proposed by Kuhl-
mann et al. [18] and Friedel [19] directly leads to a
logarithmic decrease of the flow stress. This model

was modified in order to account explicitly for the
evolution of dislocation density by Verdier et al.
[20]

do ’
-~ - _F-—
de Mo
U . 0
X exp ( kB_OT) sinh (kZ_UT) (12)

where E is Young’s modulus, Mryayior is the Taylor
factor, o is 0.3, u is the shear modulus, vp is the
Debye frequency, kg is the Boltzmann constant, 7'
is the absolute temperature, Uj is the activation en-
ergy and v is the activation volume. g, is the disloca-
tion forest contribution to the flow stress and is
related to the dislocation density, pg, by

= MTaylora:ub\/p_f? (13)

where b is the Burger’s vector. From the evolution
of &, the evolution of dislocation density is immedi-
ately derived and the stored energy of cold work, is
calculated as

G) = 3l (14)

The full form of this equation depends on the nature
of the dislocation and includes a logarithmic term
containing inner and outer cut-off radii, within
which the line energy is calculated. Humphreys
and Hatherly [6] argue that for typical values of
cut-off radii and for average dislocation popula-
tions, the logarithmic term can be neglected giving
rise to a factor of a half, an approximation which
is used in the following calculations.

Q

2.3. Growth kinetics

Once a sub-grain has reached the critical size for
nucleation (Eq. (3)), it will grow into the deformed
matrix if it has access to a boundary of sufficient
mobility. The growth rate of a given grain is taken
to be

o(t) = My G(1), (15)

where My, is the average grain boundary mobility.
The size (radius) #(z), of a given grain at time ¢,
nucleated at time ¢/, will then be the initial radius
of the grain at nucleation ry(z), plus the increase in
radius due to growth at rate V(¢), between times ¢
and ¢/

r(t', 1) =ro(f') + /t Mg, G(¢")dt". (16)
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The initial grain radius at nucleation is given by
the critical radius for nucleation, Eq. (3), which
gives with Eq. (16) the grain radius at time ¢’ as

(Z t /SE /MgbG // // (17)

Assummg that the grains are spherical and that
their growth rate is isotropic, then the volume of a
grain at time ¢, nucleated at time ¢’ is

3
4n (2/55 /MgbG N)dl") ] (18)

3
The assumption of spherical crystallites is sup-
ported by the equiaxed microstructure observed
after complete recrystallisation. If necessary, the
effect of grain geometry can be considered by intro-
ducing a corrective factor (for simple geometries see

[21]).

Vg t)=

2.4. Global recrystallisation kinetics,
isothermal case

From the nucleation rate and the growth rate one
still has to deal with the impingement problem,
before obtaining the global recrystallisation kinet-
ics. The volume, ¢(z,t'), of grains at time ¢, nucle-
ated at time ¢/, is simply the number of nuclei
formed at time ¢/, multiplied by the volume of each

grain
3
/MgbG ”)dt") .
(19)

The extended volume fraction, ¢(¢) is obtained by
integrating between time 0 and ¢

$(t) = 4?“ /O N () (é’(iﬁ) + / tMgbG(t”)dt”)sdt’.
t (20)

The actual recrystallised volume fraction X(¢), is
given by

X(1) =1 —exp(=¢(1)). (1)

The usual derivation of JMAK equation is
straightforward from the previous equations under
the simplifying assumptions of a constant nucle-
ation rate or constant number of nucleation sites
(site saturation) and a constant growth rate. In the
most general case, the situation that has to be dealt
with is considerably more difficult, and requires
solving a double integral equation. A mathematical

o(t,1)dt =

(N(t/)dt/)é"?n (Z/SE

technique allowing a numerically efficient solution
of the problem was found by Schneider in the con-
text of polymer crystallisation [10]. The details of
the procedure is to be found in Refs. [22-25].

Schneider et al. [10], by applying the ideas of
Tobin [26,27], developed a method to solve the
equivalent of Eq. (20). By repetitive differentiation
of Eq. (20) the double integral can be converted into
a series of coupled differential equations, which in
turn are easily solvable numerically. The advantage
is that these equations can be integrated solely with
respect to time, and the problem of the double inte-
gration over time and nucleation time is removed.

The extended volume fraction is rewritten in the
form of the following Minkowski functional:

Yil0) = 8_“M)! / N(Y)

2N/SE /t I\ A4 o /
M, G(¢")dt dr. 22
X (G(t/) + Y gb ( ) ( )

The geometrical interpretation of each order of
Minkowski functional is given in Table 1. The rate
equation for ¥ () can be expressed as a function
of ¥,41(1). The extended volume fraction ¢(¢) is ex-
actly identical to the zeroth order Minkowski func-
tional and can be obtained after three successive
integrations of the ¥-function of higher order.

2.5. Global recrystallisation kinetics,
non-isothermal case

The incorporation of non-isothermal conditions
into the rate equations is straightforward provided
the temperature dependence of the elementary step
is known [10]. The temperature dependence of
recrystallisation nucleation arises from the tempera-

Table 1

The four rate equations describing the evolution of the Minkow-
ski functionals for recrystallisation and their geometrical
significance

Geometric
significance

Functional Rate equation
order ()

0 Wo(t) = n323’5k( )j ) + My G(1)®,(r) Extended
volume
fraction
+ Mg, G(t)P,(r) Extended
surface
fraction
2 (1) = 9S8O 4 M G(1) W5 (1) Mean
curvature
Gaussian
curvature

1672 N (1)

1 '}’1(1) =T (1)

3 W3(1) = 8nN (1)
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ture dependence of static recovery, which is ther-
mally activated, (Eq. (12)), and through the temper-
ature dependence of the boundary mobility’s.
Mobility plays a role in the growth terms, for sub-
grain growth (Eq. (2)) and grain growth (Eq. (15))
once nucleation has occurred. It is then sufficient
to use a function, 7(¢), describing the evolution of
temperature with time, to update the recovery rate,
Eq. (12), and the temperature dependent parameters
in the nucleation and growth model at each time
step. The temperature dependent parameters are
the two elastic modulii, £(7) and p(7) (weak depen-
dence), and the boundary mobilities M(7), and
My(T) (strong dependence). The temperature
dependence of the elastic modulii is well known
for most materials. The mobility is less well charac-
terised, however the Turnbull estimation for mobil-
ity [28] can be used as a first approximation to
account for the temperature dependence.

3. Application to Zircaloy-4

In this section the model describing the static
recovery, recrystallisation nucleation and the kinet-
ics of growth, is applied to the annealing kinetics of
cold-worked Zircaloy-4.

Zirconium alloys are used in the nuclear industry
due to their low thermal neutron capture cross
section and limited corrosion rate [29,30]. In pres-
surised water reactors, the alloy Zircaloy-4 is com-
monly used as the cladding material for fuel
assemblies. Due to the processing of the Zircaloy-4
fuel tubes (cold pilgering) the alloy is initially cold
worked and during service the dislocation harden-
ing increases due to the production of numerous
irradiation defects, principally dislocation loops.
Although the microstructure is stable during the
fuel assemblies life within the reactor (no significant
recovery of initial dislocation density at operating
temperatures of ~350 °C), post-service conditions
may result in cladding temperatures rising well
above 400 °C [31,32]. These temperatures can lead
to significant softening of Zircaloy-4 due to recovery
and recrystallisation, which in turn can have impor-
tant consequences on the long term behaviour of
zirconium cladding during further storage of spent
fuel [33]. It is thus important to develop a physically
based model for recrystallisation and recovery of
Zircaloy-4 which can take into account the non-iso-
thermal conditions expected during post-service.

Zircaloy-4 tubes (diameter ~9.5 mm and wall
thickness ~0.6 mm) in the cold worked stress relieved

state (cold work of 78%) were tested. The composi-
tion of the base alloy Zircaloy-4 is as follows:
1.25 wt% Sn, 0.2 wt% Fe, 0.12 wt% Cr, 1300 ppm
O, and 136 ppm C. Isothermal heat treatments were
carried out on the tubes under vacuum in the temper-
ature range of 400-520 °C. The results of the model
are of course sensitive to the parameter values, how-
ever these values have severe restrictions and must lie
within the range of physically reasonable values
which are known. Some parameters are fixed, as they
have been measured experimentally and reported in
the literature. Others such as the activation energy
and volume for recovery and the temperature depen-
dence of mobility are not so well known, have con-
flicting values in the literature or cannot be directly
measured. The recovery model and the mobility are
fitted to experimental data at several temperatures
and then checked at other temperatures to ensure
consistency. No other parameters were changed or
required to describe the critical strains and tempera-
tures or the non-isothermal recrystallisation kinetics,
of Hunt and Schulson [34], thus serving as a test of the
model and validating the parameters used.

3.1. Recovery kinetics

Although cold-worked Zircaloy-4 softens at tem-
peratures around 400 °C, below approximately
420 °C, no recrystallisation is observed [35]. The
softening can thus be directly attributed to static
recovery. The kinetics of static recovery are given
by Eq. (12). There are two fitting parameters, the
activation energy and the activation volume, for
which the order of magnitude is known. For Zirca-
loy-4, the activation energy is taken to be the same
as that for self-diffusion 319 kJ/mol. To fit the data
an activation volume of 28b% is used which is within
the range of physically acceptable values of about
20-50b" [36]. An example of the recovery kinetics
at 400 °C is given in Fig. 1 which illustrates the soft-
ening kinetics of cold worked Zircaloy-4 compared
to the output of the recovery model. The value of
Uy and v allow the accurate description of softening
kinetics for all temperatures below 420 °C.

3.2. Global recrystallisation kinetics isothermal
case

The model for recrystallisation nucleation and
growth described in part 2 is now applied to the iso-
thermal recrystallisation kinetics of Zircaloy-4. The
parameters used are detailed in Table 2. In pure
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Time (h)

Fig. 1. Comparison of softening kinetics of Zircaloy-4 at 400 °C
to the recovery model.

Table 2
Notations and values of parameters for Zircaloy-4
Parameter Name Value References
E Young’s 119.6— [53]
modulus 0.076 (T) GPa
u Shear modulus  40.86— [54]
0.02 (T) GPa
Vb Debye 5.2x 102 Hz [55]
Frequency
YSE Surface energy ~ 0.22 Jm™2 (no [6]
data for Zircaloy-4)
D; Initial grain size 5% 10™°m
b Burger’s vector  3.23x 107'"m [56]
U, Activation 319 kJ/mol
energy of
recovery
v Activation 28h2
volume for
Recovery

zirconium Dewobroto et al. [37], using EBSD,
showed SIBM on grain boundaries to be a mecha-
nism for nucleation and the assumption that this
mechanism holds for Zircaloy-4 will be used in the
following. The recovery kinetics from Section 3.1
are used without any changes. An initial grain size
of 5um was measured using optical microscopy.
The measured stress strain curve of Zircaloy-4 was
approximated by a power law to give the increase
in flow stress as a function of cold-work strain:

(6 — 00) = & = 238:"° MPa. (23)
The initial average sub-grain size (ro) as a function

of the amount of work hardening, (¢ — a), is taken
from Abson and Jonas [38]

8.6x107°
(6 —aq)

The order of magnitude of the surface energy,
sk, is known to be between 0.1 and 1J m~2 [6], in
the following a fixed value of 0.22Jm™? is used.
The remaining parameters required to describe the
kinetics of recrystallisation are the average sub-
grain boundary and grain boundary mobilities,
Mg, and Mg, respectively. The average sub-grain
boundary mobility is given by

{ro) = (24)

My — / " s (0)M(0)do. (25)

where @(0) is the distribution of sub-boundary mis-
orientations, 0yag is the misorientation at which a
sub-grain boundary has the same mobility as a high
angle boundary (15°). M(0) is the function describ-
ing the dependence of mobility on boundary misori-
entation. Following [11], the average quantity lies
between 0.02 and 0.2 of the high angle mobility.
As the boundary mobility is not characterised in
Zircaloy-4; the model is simplified by assuming that
a single mobility M, can be used for both types of
boundaries, M,,. being used as an adjustable
parameter to fit the model to the experimental data.

Figs. 2 and 3 show the softening kinetics and the
recrystallised volume fraction for Zircaloy-4
annealed at different temperatures compared to
the output of the model. The experimental data
for hardness and the metallographic results are well
described by the model.

250 1 1 1 I T 1 1
o [m]
200 |- B
s 150 5 1 \I
= A \
-->\ “ '
R A L . g
1
1
| a !
Q  Experimental Data 400°C
50 | O ExpeiimentalDataazoc | d i
<  Experimental Data 520°C '
Model 400°C m
=— Model 470°C ©
— — Model 520°C
0 oo R
0.01 1 100 10*
Time (h)

Fig. 2. Softening kinetics of Zircaloy-4 as measured from Vickers
hardness compared to the model output.
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0.2 |-

0.001 0.1 10 1000 10°
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Fig. 3. Recrystallisation kinetics of Zircaloy-4 as measured using
optical microscopy compared to the model output.

The mobilities used to fit the model to the exper-
imental data are somewhat smaller than those
expected from the Turnbull estimate [28]

8Dy V 1

) 26
b*R,T (26)

M ryrmbunl =

where ¢ is the grain boundary thickness (~1 nm),
Dy, is the grain boundary diffusion coefficient, R,
is the ideal gas constant and V), is the molar volume
of Zircaloy-4. This might be due to the solute-drag
[39] effect of Sn which is known to slow down the
kinetics of recrystallisation in zirconium [29,40—
43]. The slow branch of the solute drag model of
Cahn [39] can be coupled to the Turnbull mobility
giving a mobility Mg, of

1 -1
Mo = (A/[Tbll+ OCCSn) ) (27)

where Cg, is the concentration of tin and

2
o BT (G (BY B oy
E,D ksT)  kgT

where D is the diffusion coefficient of tin, and Ey is
the binding energy of tin to the grain boundary
interface.

In the following two sections the model is applied
to the prediction of critical strains and non-isother-
mal recrystallisation kinetics, without modification
of the adjustable parameters.

1x10" . : - . - T

ax10" |-

ex10" |

axto" |

- -3 -1
Nucleation Rate (m s ™)

ax10" |

0
0 5000 1x10* 1.5x10%2x10% 2.5x10* 3x10° 3.5x10* 4x10*
Time (s}

Fig. 4. Nucleation rate as a function of time.

3.3. Nucleation kinetics, prediction of the critical
strains

For a given amount of cold work, the nucleation
rate per unit volume can be calculated. This is illus-
trated in Fig. 4, which shows the nucleation rate for
Zircaloy-4 as calculated from the nucleation model
as a function of time for different temperatures.
The nucleation rate increases with increasing tem-
perature. Similar curves for the nucleation rate have
been measured in the literature see e.g. [8,9] for
other materials.

A direct output of the nucleation model is the
prediction of the recrystallisation temperatures as
a function of cold work strain. The recrystallisation
temperature, is the temperature above which recrys-
tallisation is observed for a given strain and anneal-
ing time, and is often quoted in the literature as a
way of characterising the ability of a given material
to recrystallise. Fig. 5 illustrates recrystallisation
temperatures taken from the literature [44-52] as a
function of strain for annealing times of one hour,
for alloys of the same type as Zircaloy-4 (i.e. single
phase zirconium alloys with approximately 1%Sn in
solid solution). Although there is some scatter in the
data due to the different experimental techniques,
alloys and heat treatment times, a clear trend in
recrystallisation temperatures as a function of strain
can be seen. The solid line gives the prediction of the
recrystallisation temperature for different initial.
The output of the model, run with the same values
of activation energy, activation volume and bound-
ary mobility as Section 3.2, compares very favour-
ably with the literature results.
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Steinberg et al (1997) Zircaloy-4 Zh
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Fig. 5. Critical strain for recrystallisation as a function of
temperature.

3.4. Global recrystallisation kinetics
non-isothermal case

The model is then applied to the kinetics of
recrystallisation under non-isothermal conditions,
temperature ramps off 0.5 and 25K s™!, without
introducing any new parameters. The temperature
dependence of the mobility is described using the
Turnbull mobility coupled to Cahn’s model for sol-
ute drag (see Section 3.2). It is assumed that the sur-
face energy, ysg, is constant in the temperature
range of interest. The model is tested for the recrys-
tallisation kinetics under two different conditions of

1 T 1 T T

N O Hunt and Schulson (1980) Zircaloy-4 0.5 Ks' ]
®  Hunt and Schulsen (1980) Zircaloy-4 25 Ks'
Model 0.5 Ks'

o T Model 26 Ks y I I
o.af- % % T % !
0.6 '— ‘

04 | { ]

) . . ‘ . ‘
750 800 850 900 950 1000 1050 1100
Temperature (K)

Recrystallised Fraction

Fig. 6. Comparison of the predicted recrystallised fraction with
non-isothermal heat treatments (0.5Ks™' and 25K s™') for
Zircaloy-4 with the data of Hunt and Schulson [34].

constantly increasing temperature (0.5 and
25K s™') and compared to the experimental results
of Hunt and Schulson [34]. There is a good agree-
ment between the prediction of the model and the
experimental data of [34] (see Fig. 6). This indicates
that the model has captured the essential ingredients
required to describe the recrystallisation kinetics of
Zircaloy-4 in a physically realistic and predictive
manner.

4. Conclusion

We have shown in this paper, a general method
to model recrystallisation kinetics in both isother-
mal and non-isothermal conditions. The physical
ingredients of this approach are: a nucleation crite-
rion based on a quantitative analysis of the Bailey—
Hirsch mechanisms, a model for static recovery
kinetics and a model for the overall kinetics allow-
ing for different degrees of deformation during
cold-rolling, non-constant nucleation rates, and
non-constant growth rates.

This model was applied successfully to the case of
Zircaloy-4 allowing predictions for critical strains as
a function of annealing temperature, and for recrys-
tallisation kinetics both isothermal and non-
isothermal.

This model is general enough to be applied to
other single phase materials (copper, aluminium
solid solutions), providing that strain induced
boundary migration remains the main nucleation
mechanism. It could also be extended in order to
predict not only the recrystallised volume fraction
but also grain sizes.
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